
Matt Grossman

How Lyft Used Envoy to Rethink
Microservice Development

Developer Experience:

Create infrastructure and tooling to
safely accelerate developer
productivity

Problems with
Lyft-in-a-box

The change pipeline

The current environment

● Containers in
XL EC2s

● Sync from
local →
remote for
hot-reload

● Run every
service at Lyft

Problems arise

● Scales by
ENG✖Services

● Environment drift
● Unclear ownership

An unfortunately normal workflow

● Provision a onebox
● Wait an hour
● Re-provision until environment works
● Give up
● Deploy and test in staging

Sharing a
developer
environment

What’s so wrong with deploying to staging?

● Provision a onebox
● Wait an hour
● Re-provision until environment works
● Give up
● Deploy and test in staging

Advantages of staging

● Production-like
● Ingress from simulated traffic
● Teams maintain SLOs

Problems with shared environments

● A broken service breaks many (transitive?) consumers
● Only one version deployed per service
● Deploying requires PR=>LGTM=>CI=>deploy

Staging
overrides

Goal: provide isolation within staging

Goal: provide isolation within staging

Offloaded
pod

Goal: provide isolation within staging

Override
metadata

Goal: provide isolation within staging

Routing
override

Introducing: Staging Overrides

● Unregistered “offloaded” pods

● Propagated override metadata

● Dynamic routing overrides

Introducing: Staging Overrides

● Unregistered “offloaded” pods

➡ EDS exclusion in control-plane

● Propagated override metadata

● Dynamic routing overrides

Introducing: Staging Overrides

● Unregistered “offloaded” pods

➡ EDS exclusion in control-plane

● Propagated override metadata

➡ OpenTracing baggage

● Dynamic routing overrides

Introducing: Staging Overrides

● Unregistered “offloaded” pods

➡ EDS exclusion in control-plane

● Propagated override metadata

➡ OpenTracing baggage

● Dynamic routing overrides
➡ Custom filter + ORIGINAL_DST

Offloaded pods: EDS exclusion

...
app=foo
environment=staging
offloaded-deploy=true
...

Offloaded pod deploy
for pod in pods:

 if pod.labels.get('offloaded-deploy') == "true":

 # exclude offloaded-pods from service discovery

 continue

With override metadata

Override metadata
{
 "envoy_overrides": [
 { "cluster_name": "pay",
 "ip_address": "10.0.0.42:8080"
 },
 { "cluster_name": "api",
 "ip_address": "5.4.3.2:4444"
 },
],
}

Distributed tracing

Distributed tracing

● Propagated trace
data helps clarify
complex flows

OpenTracing (OpenTelemetry)

● We already propagate this header
(“context propagation”)

● OpenTracing header embeds “baggage”,
which contains arbitrary key:value
pairs

Envoy filters

Envoy @ Lyft

HTTP filters

● Deploy custom filter to mesh
● Mutate route just before

egress to upstream cluster

Filter logic

● Extract overrides (SVC:IP pairs) from
tracing baggage

● See if any overrides match where we
“should” be going

● If so, forward to override IP instead

Http::FilterHeadersStatus OverridesFilter::decodeHeaders(Http::RequestHeaderMap& headers, bool) {
 // Get the baggage from the active_span, decode, and convert to our format
 const std::string baggage = decoder_callbacks_->activeSpan().getBaggage("overrides");
 RequestContext request_context;
 request_context.ParseFromString(baggage)
 // Iterate through potential overrides
 for (auto field : request_context.envoy_overrides()) {
 if (field.cluster_name() == cached_cluster_name) {
 // Wrap the real route in a subclass of Router::DelegatingRoute
 auto route_override = std::make_shared<OverrideDelegatingRoute>(
 // DelegatingRoute "delegates" all calls by default to the wrapped
 // route, in this case a ptr to the current route
 decoder_callbacks_->route(),
 // Our subclass always returns our chosen cluster for
 // route_override.routeEntry().clusterName()
 controller_->originalDstClusterName(),
);
 // Set our new route as the chosen route
 decoder_callbacks_->setRoute(route_override);

 // Set ip:port pair to the ORIGINAL_DST header
 headers.setReferenceKey(Http::Headers::get().EnvoyOriginalDstHost, field.ip_address());
 break;
 }
 }
 return Http::FilterHeadersStatus::Continue;
}

Implementation

Http::FilterHeadersStatus OverridesFilter::decodeHeaders(Http::RequestHeaderMap&
headers, bool) {
 // Get the baggage from the active_span, decode, and convert to our format
 const std::string baggage =
 decoder_callbacks_->activeSpan().getBaggage("overrides");
 RequestContext request_context;
 request_context.ParseFromString(baggage)
 // Iterate through potential overrides
 for (auto field : request_context.envoy_overrides()) {

Extract override data

 // Iterate through potential overrides
 for (auto field : request_context.envoy_overrides()) {
 if (field.cluster_name() == cached_cluster_name) {
 // Wrap the real route in a subclass of Router::DelegatingRoute
 auto route_override = std::make_shared<OverrideDelegatingRoute>(
 // DelegatingRoute "delegates" all calls by default to the wrapped
 // route, in this case a ptr to the current route
 decoder_callbacks_->route(),
 controller_->originalDstClusterName(),
);
 // Set our new route as the chosen route
 decoder_callbacks_->setRoute(route_override);

Modify the route

clusters:
...
- name: context_propagation_cluster
 connect_timeout: 1s
 type: ORIGINAL_DST
 lb_policy: CLUSTER_PROVIDED
 original_dst_lb_config:
 use_http_header: true

Original Destination Cluster

$ curl -H ‘x-envoy-original-dst-host: 10.0.0.42:8080’ …

 decoder_callbacks_->route(),
 // Our subclass always returns our chosen cluster for
 // route_override.routeEntry().clusterName()
 controller_->originalDstClusterName(),
);
 decoder_callbacks_->setRoute(route_override);
 // Set ip:port pair to the ORIGINAL_DST header
 headers.setReferenceKey(Http::Headers::get().EnvoyOriginalDstHost,
 field.ip_address());
 }
 }
 return Http::FilterHeadersStatus::Continue;
}

Set Original Destination Cluster

Summary

● Extract overrides from baggage from
tracing header

● Wrap chosen route and set clusterName()
to original_dst

● setRoute() to the wrapped route
● Add IP address to

x-envoy-original-dst-host header

Staging Overrides v1

Extending
overrides

Baggage-attachment tooling

???

Need to map branch → baggage

● drivers-4242.dev.lyft.net/api/routes
● curl -H ‘x-dev-id: drivers-4242’ …

● Send it through a proxy

Our scriptable ingress proxy

● Originally for mobile engineers to mock
BEs

● Typescript scriptable to modify req/resp

How users actually make requests

Custom typescript proxy

What else can we do?

What if we put our proxy into the mesh

● Tweak req/resp
● Mocking at any hop

What if we redirect to traffic to laptops

● Faster dev loop
(no PR, image-build,
etc)

What if we add more controls to baggage?

● Temporary DEBUG
logs enabled

● Granular feature
flags

Long-term vision for staging overrides

● Give complete control over request flow
at every hop

● Isolate requests to allow reuse of shared
environments

● Provide local+cluster tooling to give devs
visibility and understanding

Conclusion

Results

● Provisioning: 1hr w/ onebox, to 10min
with staging overrides

● Parity: Infra parity and functional parity
lead to fewer surprises

● New framework: superpowers at every
hop; just getting started

Challenges / retro

● Context propagation (library updates)
● Data isolation (stats, DBs)
● General new paradigm / teaching
● If redone, could we utilize other tech?

(telepresence?)

Thanks!

Matt Grossman

matt@mrgrossman.com

mailto:matt@mrgrossman.com

